- PII
- 10.31857/S0203030625010069-1
- DOI
- 10.31857/S0203030625010069
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 1
- Pages
- 92-110
- Abstract
- The paper is devoted to the analysis of grouping of volcanic seismicity events, especially in volcanic swarms. Volcanic swarms observed during the eruptions of the Bárðarbunga (2014) and Fagradalsfjall (2021) volcanoes in Iceland were analyzed. In the paper, an attempt was made to apply the nearest neighbor method the stated goal. The method allows identifying groups with different scales of generalized distances. For example, it typically reveals two groups of events in tectonic seismicity and is widely used to identify aftershocks. As a result of the work, significant differences were observed in the shape of the distributions of generalized distances to the nearest neighbor for volcanic seismicity compared to tectonic seismicity. Namely, two types of unimodal distributions were found, one of them is observed mainly before the eruption, and the other during the eruption. The first type is probably caused by the merging of two close distribution modes and reflects the internal heterogeneity of seismicity during such periods. However, the unimodality of distributions makes it difficult to identify events in terms of related (clustered) or independent (background). Based on the results obtained, it can be assumed that before the eruption, the proportion of background seismicity fluctuates around 70%, and during the eruption from 90 to 100%. This may indicate different sources of seismicity at one or another stage of the eruption.
- Keywords
- сейсмология вулканическая сейсмичность вулканические рои кластеризация сейсмичности метод ближайшего соседа
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Баранов С.В., Жукова С.А., Корчак П.А., Шебалин П.Н. Продуктивность техногенной сейсмичности // Физика Земли. 2020. C. 40–51. https://doi.org/10.31857/S0002333720030011
- 2. Баранов С.В., Шебалин П.Н. Закономерности постсейсмических процессов и прогноз опасности сильных афтершоков. М.: РАН, 2019. 218 с.
- 3. Гордеев Е.И. Сейсмичность вулканов и контроль вулканической активности // Вестник Дальневосточного отделения Российской академии наук. 2007. № 2. С. 38–45.
- 4. Малютин П.А. Воздействие флюидных режимов на вариации продуктивности землетрясений по данным натурных экспериментов // Проблемы комплексного геофизического мониторинга сейсмоактивных регионов / Труды Девятой Всероссийской научно-технической конференции с международным участием 24–30 сентября 2023 г. Петропавловск-Камчатский, 2023. С. 156–162.
- 5. Маточкина С.Д. Проверка выполнения закона продуктивности землетрясений в условиях лабораторных экспериментов по разрушению горных пород // III Всероссийская научная конференция с международным участием “Современные методы оценки сейсмической опасности и прогноза землетрясений” (Москва, ИТПЗ РАН, 25–26 октября 2023 г.). М.: ИТПЗ РАН, 2023. С. 160‒164.
- 6. Baiesi M., Paczuski M. Scale-free networks of earthquakes and aftershocks // Phys. Physical Rev. E // Statistical, nonlinear, and soft matter physics. 2004. V. 69. Iss. 066106. https://doi.org/10.1103/PhysRevE.69.066106
- 7. Bender B. Maximum likelihood estimation of b values for magnitude grouped data // Bull. of the Seismological Society of America. 1983. V. 73. P. 831‒851.
- 8. Einarsson P., Brandsdóttir B. Seismicity of the Northern Volcanic Zone of Iceland // Front. Earth Sci. 2021. V. 9. 628967. https://doi.org/10.3389/feart.2021.628967
- 9. Fischer T., Hrubcova P., Salama A., Doubravová J., Agustsdottir T., Gudnason E., Horalek J., Hersir G.P. Swarm seismicity illuminates stress transfer prior to the 2021 Fagradalsfjall eruption in Iceland // Earth and Planet. Sci. Lett. 2022. V. 594. 117685. https://doi.org/10.1016/j.epsl.2022.117685
- 10. Jacobs K., Mcnutt S. Using seismic b-values to interpret seismicity rates and physical processes during the preeruptive earthquake swarm at Augustine Volcano 2005‒2006 // US Geological Survey Professional Paper. 2010. P. 59‒75.
- 11. Jordan T.H. Far-field detection of slow precursors to fast seismic ruptures // Geophys. Res. Lett. 1991. V. 18. P. 2019–2022.
- 12. Kanamori H. Energy release in great earthquakes // J. Geophys. Res. 1977. V. 82(20). P. 2981–2987.
- 13. Mignan A., Woessner J. Estimating the magnitude of completeness for earthquake catalogs // Community Online Resource for Statistical Seismicity Analysis. 2012. https://doi.org/10.5078/corssa-00180805. Available at http://www.corssa.org
- 14. Minakami T. Fundamental research for predicting volcanic eruptions. Part 1 // Bull. Earthq. Res. Inst. Univ. Tokyo. 1960. V. 38. P. 497–544.
- 15. Molchan G. Interevent Time Distribution in Seismicity: A Theoretical Approach // Pure and Applied Geophysics. 2005. V. 162. https://doi.org/10.1007/s00024-004-2664-5
- 16. Nandan S., Ram S., Ouillon G., Sornette D. Is Seismicity Operating at a Critical Point? // Phys. Rev. Lett. 2021. V. 126. https://doi.org/10.1103/PhysRevLett.126.128501
- 17. Passarelli L., Rivalta E., Jónsson S., Hensch M., Metzger S., Jakobsdóttir S.S., Maccaferri F., Corbi F., Dahm T. Scaling and spatial complementarity of tectonic earthquake swarms // Earth and Planet. Sci. Lett. 2018. V. 482. P. 62‒70. http://doi.org/10.1016/j.epsl.2017.10.052
- 18. Roland E., Jeffrey J. McGuire. Earthquake swarms on transform faults // Geophys. J. International. 2009. V. 178. P. 1677‒1690.
- 19. Shebalin P.N., Narteau C., Baranov S.V. Earthquake productivity law // Geophys. J. International. 2020. V. 222. Iss. 2. P. 1264–1269. https://doi.org/10.1093/gji/ggaa252
- 20. Sigmundsson F., Hooper A., Hreinsdottir S., Vogfjörd K., Ofeigsson B., Heimisson E., Dumont S., Parks M., Spaans K., Gudmundsson G., Drouin V., Árnadóttir T., Jonsdottir K., Gudmundsson M., Högnadóttir T., Fridriksdottir H., Hensch M., Einarsson P., Magnússon E., Eibl E. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland // Nature. 2015. V. 517. P. 191‒195.
- 21. Sornette D., Helmstetter A. Endogeneous Versus Exogeneous Shocks in Systems with Memory // Phys. A: Statistical Mechanics and its Applications. 2003. V. 318. 577‒591. https://doi.org/10.1016/S0378-4371 (02)01371-7
- 22. Traversa P., Grasso J.-R. How is Volcano Seismicity Different from Tectonic Seismicity? // Bull. of the Seismological Society of America. 2010. V. 100. https://doi.org/10.1785/0120090214
- 23. Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California I: Identification and stability // J. Geophys. Res. Solid Earth. 2013. V. 118. P. 2847–2864. https://doi.org/10.1002/jgrb.50179
- 24. Zaliapin I., Gabrielov A., Keilis-Borok V.I., Wong H. Clustering analysis of seismicity and aftershock identification // Phys. Rev. Lett. 2008. V. 101. 018501. https://doi.org/10.1103/PhysRevLett.101.018501